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Motivation: Cost

Financial and Environmental Cost

Commercial electronics device manufacturing is still
expensive, with fabs costing up to 15 billions and requiring
massive quantities of water and power.
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Motivation: Versatility

Can we print any material on any substrate?
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Motivation: loT Opportunities

loT has five key verticals: Wearable Devices, Cars, Homes, Cities, and the
Industrial Internet. Impact by 2025 is $3.9-$11.1 Trillions.

* Industrial
Internet
* Connected 4 )

Cities

The IoT can only be enabled by
breakthroughs in the cost of
ubiquitous sensors for collecting and
sharing data
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The loT Nine Applications

Nine key areas where IoT is expected bring up to $11Trillion in 2025.
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State of the Art - Printing Technologies

» Current electronics and 3D printing using inkjet technology, used for
printing low-end electronics but can only print down to 20 microns
(20,000 nanometers).

> 20 microns was the silicon electronics line width in 1975.

» Cost of a currently printed electronics is 10 to 100 times less than the
cost of current silicon-based sensors.

> A printing technology is
needed that can print
conductive, semiconducting,
and insulating materials
(inorganic or organic) down to
20nm and 1000 times faster

2
,‘/ than inkjet.
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How can electronic printing leap from 1975 to Today?

The NSF Center for High-rate Nanomanufacturing
has developed the technology to prints electronics
with 20 nm minimum line width or smaller.

However, is nanoscale printing alone enough??

» For printed electronics and devices to compete with current silicon-based nano and
microscale electronics, it has to print nanoscale features at:

» orders of magnitudes faster than inkjet based printers and
» cost should be fraction of the current cost for making silicon-based electronics
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CHN Directed Assembly Toolbox
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How does it work?




Beyond 3-D & Electronic Printing:

Nanoscale Offset Printing Advantages

IP_uIIing @
direction '

more than 100 times without
) any additional process
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Transfer

& :
Assembly “printing”
“inking”

Advanced Materials, 2015, 27, pp. 1759-1766.

\\\ A
The template can be reused A :

» Additive
» High throughput
» Prints down to 20nm

» Room temperature and
pressure

> Prints on flexible or hard
substrates

» Multi-scale; nano to
macro

» Material independent

» Very low energy
consumption

» Very low capital
investment
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Damascene Templates for Nanoscale Offset Printing
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Nanomanufacturing
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Directed Assembly-based Printing of Interconnects
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*Manufacturing of 3-D nanostructures using directed nanoparticle assembly process. (A and B) NPs suspended in aqueous solution are (A) assembled and (B) fused in the patterned via

geometries under an applied AC electric field. (€) Removal of the patterned insulator film after the assembly process produces arrays of 3-D nanostructures on the surface. (D) Scanning
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Fabrication of Interconnects with Controlled dimensions
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> Fabrication over a large area. Device # 1
> Controlled, repeatable and reliable fabrication.
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Do particles completely fuse following the assembly?

» TEM shows that NPs completely fuse without any voids or gaps.
» Nanopillars have polycrystalline nature.
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Mechanism of Interfacial Convective Assembly Results

Convective vs interfacial connective assembly
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Assembly of NPs into Trench and Vias

Over Large Areas

Particle: 30nm fluorescent (green) silica NPs
Assembly time: <10 min

No electrophoretic or Di electrophoretic force is used. & e
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What Could We manufacture with Multiscale Offset Printing?
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The world’s first Printer NanoOPS

(Nanoscale Offset Printing System)

» Capable of printing down to 20nm, 1000 times faster than inkjet and
costs 10 to 100 times less than conventional nanofabrication.

» Fully automated and integrated registration and alignment.

Present: Microelectronics Factory: $10B-$15B >>>> MILARA

Future: Nanomanufacturing Factory: $50-S100M

s Center for High-rate
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Fully Automated Nanoscale Offset Printing System (NanoOPS)

Prototype was Demonstrated to more than 58 companies

» NanoOPS is capable of printing
using templates with micro and
nanoscale patterns (down to
20nm).

» Integrated registration and
alignment.

NanoOPS Videos on Youtube:

From Lab to Fab: Pioneers in Nano-
Manufacturing
https://www.youtube.com/watch?v=tZeO9I1KEec

NanoOPS at Northeastern University
https://www.youtube.com/watch?v=2iEjlcog774

NanoOPS - A Nanomanufacturing Breakthrough
https:/lwww.youtube.com/watch?v=J4XupF3Zt5U

C MIARA D




The World’'s First Nanoscale Printer for Electronics

Awards and Publicity

2016 Printed Electronics Conf., Berlin 2016
V2 awarD Y Best Academic R&D
LY A \y :
— 1 — /< ‘\'..‘ INNE ;." Award
DU LS
A W A R D - = IDTechEx Bl EUROPE 2016

The Boston BGlobe H“e"i‘"eild

WWW.BOSTONHERALD.COM

1000 times faster printing with a 1000 times

smaller features than inkjet or 3D printing.
NanoOPS Videos on Youtube:

From Lab to Fab: Pioneers in Nano-Manufacturing: https://www.youtube.com/watch?v=tZeO9l1KEec
NanoOPS at Northeastern University: https://www.youtube.com/watch?v=2iEjlcog774 ‘a Center fortigh-rate
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Strong Industrial Partnerships
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Applications

Nanoelectronics
Using 0, 1 and 2 D Nanomaterials, Organic

Semiocnductors or Inorganic Narrow or
Wide-Bandgap Semiconductors.
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Printed Nanomaterials-based Electronics

> Flexible transparent n-type MoS, transistors
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Nanotechnology, Vol. 23, (2012).
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Printing Nanomaterials-based Electronics

> Flexible transparent n-type MoS, transistors

|

MoS, assembly to the template
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Reusable fo;
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Printing Wireless Sensors and Electronics at

a Fraction of their Current Cost

Sensors for
Chemicals

Sensors for E. coli bacteria, viruses, and other
pathogens 5 ‘ 1 3 Functionalized

Cancer and
cardiac
diseases.
. “ Detection limit
is 200 times
lower than

Current - Band-Aid sensor
technology

Empty Trench mAb 2G4 NP

Supporting
printed
electronics
for sensor |
systems ﬂd




Printed Chemical Sensors

© 100 ppm

3000 6000 9000
Time (sec.)

SEM images setup for assembled SWCNT array devices. (e) An optical image of wafer
scale sensor devices. (f) Chemical structure of TEMPO molecules. (g) Real-time current
changes as a function of conc. H,S gas at 10, 25, 50, 75 and 100 ppm for the
functionalized SWCNT sensor.

Analyst, 138, December 2013, Issue 23, pp.7206-7211 D e
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Flexible CNT Bio Sensors for Glucose,
Urea and Lactate in Sweat or Tears

Functionalized

Center for High-rate
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Stability of D-glucose/L-lactate/urea

detections (2~4 weeks)
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Printed Sensor for Glucose Detection in Sweat

Mediator-free 3@ generation sensors

Glucose detection from Sweat

3 _| |Sweat level
1.258x10 GOx and linker
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How does state of the art compares?

Commercial Sensors The Sensors developed by the CHN

Weight: 5.5 Ibs Weight: 4.15 Ibs Weight: 0.000220462 Ibs

Commercial Glucose Our “Band-Aid” sensor uses sweat or tears to detect glucose.
Sensors use blood And can be used to detect viruses, bacteria, cancer, etc.

» Current Sensors are large and consume more energy
> Most sensors are not wearable, flexible or wireless

o¥a Center for High-rate
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A New Spinout to Make the Nanoscale Printing Systems

Available to Industry and Researchers

Nano £&PS

WWWwW.Nnano-ops.net

Core Nanoprinting Equipment
35 patents

Core Experienced Team
Products:

Electronics (power or consumer electronics)
Chemical Sensors,

vVVyVvVvse WwnNnPE

BioSensors: Cancer, Antibiotics, Physical

and Fitness Indicator Nano &&PS

Display applications MILARA
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Gen 2 NanoOPS Printing System

The second generation NanoOPS printing System, currently being built, has the
ability to print nanoscale sensors and electronics on any polymer substrate. The
system is fully automated with built-in alignment and registration, inspection and
annealing.

Inspection

_ Flash annealing

i
/////
-
= : Substrate
AIigM mtht ?nd
registration QJ pu
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Gen 3 NanoOPS Printing System

Designing and Building the third generation NanoOPS printer that has the ability to
print nano and microscale patterns and structures on any substrate (silicon, glass,
ceramic, or metal) is underway.

o¥a Center for High-rate
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» Printing at the nanoscale introduces a disruptive technology for
making nano and microelectronics that will change the electronics
and sensor landscape.

» Printing nano and micro electronics costs 10 to 100 times less
than conventional fabrication.

» 1000 times faster printing with a 1000 times smaller patterns than
iInkjet or 3D printing.

» Electronics are printed at ambient temperature and pressure, on
any rigid or flexible substrate, using any conductive, semiconducting
or insulating materials (organic or inorganic).

» Other benefits of printed electronics and sensors are: sustainable
manufacturing, improved performance and the use of any existing
and new nanomaterials, etc.

» This will open the door to many new and innovative applications.

Center for High-rate
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Thank you, ZrAFSL|C}

Prof. and Director Ahmed Busnaina
Northeastern University
a.busnaina@northeastern.edu

www.northeastern.edu/nano
www.nanomanufacturing.us
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Printing Nano Structures
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What we can do with printing LEDs Structures

Printed silica-gold nanorods with 40 and 80
nm gold nanoparticles on top.

Printed hybrid silica-gold nano rods
over a large area.

‘ Center for High-rate
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What we can do with printing LEDs Structure

Homogenous nanopillars:

Polystyrene Silica
CQPper Aluminum latex{SL) \
. \ s gl \
- § R—— s
50 50nm
oy s s s
Hybrid nanopillars:
fluorescent
fluorescent
RSL ﬂ 0o silica Id
-=Y. _(CdSe) v o
gold$ T A"
- Gold gold PSL $
. Fe— 50 nm
50 nm 50 nm 50 nm gold S

(&2
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What we can do with precise printing of QDs?

» Large scale printing of a single
layer 20nm silica nano particles.

1 pm* WD = 5.1 mm
H EHT = 10.00 kv
Mag= 2.57KX Signal A = InLens

User Name = ABBASI 100 nm* WD = 5.1 mm

Date :22 Aug 2017  — EHT = 10.00 kv
Time :18:07:19 Mag =135.44 K X Signal A = InLens




Functional Materials and Surfaces

» Ordered CNT materials for EMI shielding = Excellent conductivity and transparency
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> Active camouflage = Designed structures for very good absorption in the visible (red)
and near infrared regime
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